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00-956 Warsaw, Poland
2 Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46,
02-668 Warszaw, Poland
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Abstract
Various problems concerning the geometry of the space u∗(H) of Hermitian
operators on a Hilbert space H are addressed. In particular, we study
the canonical Poisson and Riemann–Jordan tensors and the corresponding
foliations into Kähler submanifolds. It is also shown that the space D(H) of
density states on an n-dimensional Hilbert space H is naturally a manifold
stratified space with the stratification induced by the the rank of the state. Thus
the space Dk(H) of rank-k states, k = 1, . . . , n, is a smooth manifold of (real)
dimension 2nk − k2 − 1 and this stratification is maximal in the sense that
every smooth curve in D(H), viewed as a subset of the dual u∗(H) to the Lie
algebra of the unitary group U(H), at every point must be tangent to the strata
Dk(H) it crosses. For a quantum composite system, i.e. for a Hilbert space
decomposition H = H1 ⊗ H2, an abstract criterion of entanglement is proved.

PACS numbers: 03.65.Ud, 03.65.Fd, 02.40.Ft

1. Introduction

Dirac’s approach to quantum mechanics uses a Hilbert space as a fundamental object to start
with, motivating the linear structure with the superposition principle necessary to describe
phenomena like those of interference [1]. Born’s probabilistic interpretation requires the
use of a Hermitian inner product to deal with normalized states; therefore the physical
identification of states in the Hilbert space leads to the requirement that (pure) states of
a quantum mechanical system are described by elements of the complex projective space
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(one-dimensional subspaces of a separable complex Hilbert space H). By means of the
Hermitian structure on H it is possible to define a binary product on the pure states PH
[2, 4, 5]. The physical interpretation of this binary operation is given in terms of probability
transition from one state to another. On this space PH, bijective maps which preserve the
transition probability are necessary projection of unitary or anti-unitary transformations on
the original Hilbert space; this statement is the main content of Wigner’s theorem [6].

More likely, due to this ‘equivalence’ between the two descriptions (on H and on PH),
physicists have barely paid any attention to the geometrization of quantum mechanics; i.e.
to introduce a ‘tensorial description’ in such a way that nonlinear coordinate transformations
could be performed; notable exceptions obviously do exist and we provide a partial list of
references [12]. The recent great interest in the foundational aspects of quantum mechanics
motivated by the use of entanglement as a resource for quantum information and quantum
computing has boosted a deeper study of many fundamental aspects, for instance the possibility
of having a binary composition of pure states without the use of the Hilbert space linear
structure [8, 9], the possibility of having a nonlinear quantum mechanics [9, 11], more
generally the possibility of having nonlinear transformations among states.

The possibility of nonlinear transformations may turn out to be quite useful in the
classification problem of separability and entanglement because these properties are not
preserved by taking linear combinations. Moreover, an appropriate description of atomic
phenomena, involving polarization, spin orientation and angular correlations, requires that we
go beyond pure states in the description of quantum systems. This larger family of states was
introduced by von Neumann as dual objects with respect to the quantum observables; they
constitute the set of density states and an early, physically motivated, review was written by
U Fano [13].

Again, for these states a proper mathematical setting is provided by the dual space of the
Lie algebra of the observables, with respect to the coadjoint action of the unitary group. Density
states emerge as elements of the coadjoint orbits passing through some special elements in
the dual of the Cartan subalgebra. The mathematical context of coadjoint orbits is quite
well known to those physicists involved with geometric quantization and the field was widely
studied in the 1970s by Kostant, Kirillov and Souriau [14].

Each coadjoint orbit bears a natural differential structure. Observe, however, that the
spectrum of the state does not change along the orbit of the unitary action. From the point
of view of quantum evolution it corresponds to the situation of an isolated system, when all
interactions with the environment are negligible, so there is no dissipation and the evolution
is unitary. In many cases this is only a very exceptional situation, very rarely adequately
corresponding to the physical reality. On the other hand, it is a priori not clear that the
whole set of density states, i.e. a union of coadjoint orbits of the unitary action of different
dimensionalities, possesses a natural differential structure. Exhibiting such a structure in terms
of local coordinates and/or via a general geometric construction of a smooth stratification of
density states is thus of great interest when investigating dissipative systems.

Density states form a convex subset of the set of Hermitian operators on H. Some
properties of these convex bodies attracted recently attention [15]. It is thus legitimate to
ask about ‘the shape’ of the set of density matrices, in particular about the smoothness
properties of its boundary. In the simplest case of the two-dimensional H, the density matrices
form the three-dimensional unit ball with a smooth boundary—the two-dimensional unit
sphere comprising all pure states. But this situation is exceptional—in higher dimensions the
boundary does not consist exclusively of pure states; it is in addition not smooth.

The space of density states carries additional structures with respect to those available on
the space of coadjoint orbits of general Lie groups because they are related to the unitary group
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and therefore additional structures are available. Moreover, the need to consider composite
quantum systems, tensor products of the spaces associated with a choice of subsystems making
up the whole system, will bring up novel problems which will require further investigations.

All these various considerations have convinced us that a review of these mathematical
aspects along with the identification of the novel emerging problems may be useful to those
interested in the application of quantum mechanics to quantum information and are not familiar
with the geometrical background required. A recent book by Chruściński and Jamiołkowski
[16] deals with geometrical aspects of quantum mechanics; these authors however are primarily
concerned with the application of these methods to describe the geometric phase [17]. At this
point one should also refer to the paper [18] in which, in connection with geometric phase
and parallel transport along mixed states, the geometry of the manifold of density matrices
as a stratified space was discussed along slightly different lines than in the present paper (cf
section 3 below).

In the present paper the Hilbert space H will be assumed to be of finite dimension n in
order to make the differential geometry expressible in local coordinates classical. The reader
will understand that passing to an infinite-dimensional H (i.e. a differential geometry of a
Banach (or a Hilbert) manifold) is straightforward; to this aim we will try to use coordinate-
free expressions, which serve in both cases, as much as possible. The paper is organized as
follows.

In section 2 we start with presenting the Kähler structure on the Hilbert projective space
PH of pure states obtained from the standard Hermitian product on H via the momentum
map associated with the Hamiltonian action of the group U(H) of unitary transformations of
H. In this picture the pure states form just an orbit in the dual space u∗(H) of the unitary Lie
algebra u(H) of the group U(H). Because of the nondegeneracy of the canonical invariant
scalar product on u(H) we have a canonical identification of u∗(H) with u(H) which makes
the geometry of u∗(H) very rich. We decided to interpret u∗(H) as the space of Hermitian
operators on H which makes possible to understand the density states as a subset of u∗(H).

Consequently, in sections 3 and 4 we present the density states as a convex body D(H)

in u∗(H) which is a family of some U(H)-orbits and, as we will show later, also orbits of a
particular action of the group GL(H) of invertible complex linear operators on H. We show
that D(H) is naturally a manifold stratified space with the stratification induced by the the rank
of the state. Thus the space Dk(H) of rank-k states, k = 1, . . . , n, is a smooth manifold of
(real) dimension 2nk − k2 − 1 and this stratification is maximal in the sense that every smooth
curve in D(H), viewed as a subset of the dual u∗(H) to the Lie algebra of the unitary group
U(H), at every point must be tangent to the strata Dk(H) it crosses.

Section 5 is devoted to the geometry of u∗(H), to a global description of the Kählerian
structure of U(H)-orbits by means of the canonical Poisson and Riemann–Jordan tensors.
These Kählerian structures are well known in algebraic geometry and can be easily generalized
to analogous structures on general flag manifolds. The point which should be stressed here is
that the geometry we develop is canonical in that it does not depend on the matrix form of an
operator and the U(H)-orbits are treated as a collection rather than each orbit separately.

In the last section we investigate a Hilbert space decomposition H = H1 ⊗ H2 which
is usually understood as corresponding to a quantum composite system. We present an
introduction to the problems of separability and entanglement together with an abstract scheme
for measurement of entanglement.

The geometry of composite quantum systems was investigated in the literature from
several points of view. First, it is of importance to distinguish classes of states which are
equivalent under a restricted set of unitary transformations (dubbed local transformations in
the physical literature), namely those which belong to the same orbit of U(H1)×U(H2). From
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the physical point of view all states on the same orbit contain an equal amount of quantum
correlations between the subsystems; i.e., these cannot be influenced by operations performed
separately on each subsystem.

In order to characterize uniquely an orbit (i.e. a class of locally equivalent states) one can
try to find a complete set of U(H1)×U(H2)-invariant functions on D(H) such that the values
of all functions at ρ ∈ D(H) characterize uniquely the orbit through ρ [19, 20]. The task
can be effectively completed only for low-dimensional systems—in fact, only in the the case
dimH1 = dimH2 = 2 the explicit results were found [21]. The same is true for multipartite
composite systems, i.e. when H = H1 ⊗ H2 ⊗ · · · ⊗ HK . Here also the explicit results are
known for K up to 4 and dimHi = 2, i = 1, . . . , 4 [22, 23].

Other (partial) characterization of local orbits is provided by their dimensions. These
were investigated in [24, 25] and in [26] all orbits of submaximal dimensionality in the case
dimH1 = dimH2 = 2 were explicitly identified and enumerated. A similar task of finding
dimension of the local orbit through an arbitrary ρ in the case of higher dimensional systems
was never achieved. A much more modest goal of determining dimensions and topology of
local orbits stratifying the set of rank 1 (pure) states D1(H1 ⊗ H2) was, however, completed
for arbitrary finite-dimensional H1 and H2 [27].

The sets of pure states in two- and three-partite systems with dimHi = 2 can be identified
with, respectively, unit seven- and fifteen-dimensional spheres S7 and S15. In both cases there
exist the Hopf fibrations S7 → S4 and S15 → S8 which were used to investigate the geometry
of pure states in [28–31], whereas multipartite pure states were treated in [32] using Segre
variety.

Although in the present paper we limit ourselves to investigation of two-partite composite
system, we would like to point out recent achievements in geometric characterization
of entangled pure states of multipartite systems. When investigating entanglement in
multicomponent system one aims at discriminating among different classes of entanglement,
defined as different equivalence classes under appropriate group of transformations preserving
entanglement properties. The goal can be achieved by identification of the so-called
entanglement monotones, i.e. measures of entanglement which are invariant under considered
transformations. Construction of such invariants based on Plücker coordinates on
Grassmannians, naturally appearing when considering pure states of multicomponent systems,
were presented in [33] and [34]. The geometry of three-qubit pure state entanglement
was recently investigated in [35], where the geometric description of different classes of
entanglement was given in terms of submanifolds of the so-called Klein quadric—a special
quadric embedded in the five-dimensional complex projective space.

Of special interest is the set of separable states (defined in section 6), as those which,
from the physical point of view, do not carry any quantum correlations. From the construction
they form a convex subset in D(H1 ⊗ H2). Only in the case of dimH1 = dimH2 = 2 and
dimH1 = 2 and dimH2 = 3 (or vice versa) do there exist effective criteria which allow us to
discriminate separable and nonseparable (entangled) states. As a consequence only in these
low-dimensional cases can one relatively easily investigate the geometry of the boundary of
the set of separable states [37].

2. Kähler structure on the Hilbert projective space

Let H be an n-dimensional Hilbert space with the Hermitian product 〈x, y〉H being, by
convention, C-linear with respect to y and anti-linear with respect to x. The unitary group
U(H) acts on H preserving the Hermitian product and it consists of those complex linear
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operators A ∈ gl(H) on H which satisfy AA† = I , where A† is the Hermitian conjugate of
A, i.e.

〈Ax, y〉H = 〈x,A†y〉H.

The geometric approach to quantum mechanics is based on considering the realification HR

of H as a Kähler manifold (HR, J, g, ω) with canonical structures: a complex structure
J : THR → THR, a Riemannian metric g and a symplectic form ω. The latter come from the
real and imaginary parts of the Hermitian product, respectively, g = �(〈·, ·〉H), ω = �(〈·, ·〉H).
After the obvious identification of the tangent bundle THR with HR ×HR, all these structures
are constant structures induced from H:

J (x) = i · x, g(x, y) + i · ω(x, y) = 〈x, y〉H.

We have obvious identities

J 2 = −I, ω(x, Jy) = g(x, y), g(Jx, Jy) = g(x, y), ω(Jx, Jy) = ω(x, y).

The tensors g and ω being non-degenerate have their inverses: the contravariant metric tensor
G = g−1 and the Poisson tensor � = ω−1. They form together a Hermitian product

〈α, β〉H∗ = G(α, β) + i · �(α, β)

on the dual real Hilbert space H∗
R equipped with the dual complex structure J ∗. Using

the identification of H∗
R with HR via the metric tensor g, the latter can be interpreted as

a contravariant complex tensor on HR. This tensor induces two real brackets of smooth
functions on HR: {f, h}g = G(df, dh) and {f, h}ω = �(df, dh). The first one is the
‘Riemann–Jordan’ bracket associated with the contravariant version of the metric tensor g

and the second is just the symplectic Poisson bracket associated with ω. Of course both
brackets can be extended to complex functions by complex linearity and give rise to the ‘total’
bracket

{f, h}H = 〈df, dh〉H∗ = {f, h}g + i · {f, h}ω. (1)

Fixing an orthonormal basis (ek) of H allows us to identify the Hermitian product 〈x, y〉H
on H with the canonical Hermitian product on Cn

〈a, b〉Cn = akbk (2)

(we use the convention of summation on repeated indices), the group U(H) of unitary
transformations of H with U(n), its Lie algebra u(H) with u(n), etc. In this picture
(ajk)

† = (akj ) and (T †T )jk = 〈αj , αk〉, where αk = (tjk) ∈ Cn are columns of the matrix
T = (tjk). The choice of the basis induces (global) coordinates (qk, pk), k = 1, . . . , n, on HR

by

〈ek, x〉H = (qk + i · pk)(x)

in which ∂qk
is represented by ek and ∂pk

by i · ek . Hence the complex structure reads

J = ∂pk
⊗ dqk − ∂qk

⊗ dpk,

the Riemannian tensor

g = (dqk ⊗ dqk + dpk ⊗ dpk) = 1
2 (dqk ∨ dgk + dpk ∨ dpk)

and the symplectic form

ω = dqk ∧ dpk,
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where x ∨ y = x ⊗ y + y ⊗ x is the symmetric, and x ∧ y = x ⊗ y − y ⊗ x is the wedge
product. In complex coordinates zk = qk + i · pk one can write the Hermitian product as the
complex tensor

〈·, ·〉H = dzk ⊗ dzk.

The contravariant tensor G + i · � has the form

G + i · � = (
∂qk

⊗ ∂qk
+ ∂pk

⊗ ∂pk

)
+ i · (

∂qk
⊗ ∂pk

− ∂pk
⊗ ∂qk

)
or, in complex coordinates,

G + i · � = (
∂qk

− i · ∂pk

) ⊗ (
∂qk

+ i · ∂pk

) = 4∂zk
⊗ ∂zk

.

In other words,

{f, h}g = ∂f

∂qk

∂h

∂qk

+
∂f

∂pk

∂h

∂pk

, {f, h}ω = ∂f

∂qk

∂h

∂pk

− ∂f

∂pk

∂h

∂qk

,

and

{f, h}H = 4
∂f

∂zk

∂h

∂zk

.

Every complex linear operator A ∈ gl(H) on H induces the quadratic function

fA(x) = 1
2 〈x,Ax〉H.

The function fA is real if and only if A is Hermitian, A = A†.
One important convention we want to introduce is that we will identify the space of

Hermitian operators A = A† with the dual u∗(H) of the (real) Lie algebra u(H), according to
the pairing between Hermitian A ∈ u∗(H) and anti-Hermitian T ∈ u(H) operators

〈A, T 〉 = i

2
· Tr(AT ).

The multiplication by i establishes further a vector space isomorphism u(H) � T �→ iT ∈
u∗(H) which identifies the adjoint and the coadjoint action of the group U(H), AdU(T ) =
UT U †. Under this isomorphism u∗(H) becomes a Lie algebra with the Lie bracket
[A,B] = 1

i [A,B]−, where [A,B]− = AB − BA is the commutator bracket, equipped
additionally with the scalar product

〈A,B〉u∗ = 1
2 Tr(AB) (3)

and an additional algebraic operation, the Jordan product [A,B]+ = AB + BA. The scalar
product is invariant with respect to both the Lie bracket and the Jordan product (or bracket)

〈[A, ξ ], B〉u∗(H) = 〈A, [ξ, B]〉u∗(H), (4)

〈[A, ξ ]+, B〉u∗(H) = 〈A, [ξ, B]+〉u∗(H), (5)

and it identifies once more u∗(H) with its dual,

u∗(H) � A �→ Â = 1

i
A ∈ u(H),

so vectors with covectors. Under this identification the metric (3) corresponds to the invariant
metric

〈Â, B̂〉u = 1
2 Tr(AB) (6)

on u(H) which can be viewed also as a contravariant metric on u∗(H).
For a (real) smooth function f on HR let us denote by gradf and Hamf the gradient and

the Hamiltonian vector field associated with f and the Riemannian and symplectic tensor,
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respectively. In other words, g(·, gradf ) = df and ω(·, Hamf ) = df or gradf = G(df, ·)
and Hamf = �(df, ·). Note that any A ∈ gl(H) induces a linear vector field Ã on H by
Ã(x) = Ax.

Lemma 1. For Hermitian A we have

gradfA
= Ã and HamfA

= ĩA.

Proof. If 〈·, ·〉 denotes the pairing between vectors and covectors then

〈dfA(x), y〉 = 1
2 (〈y,Ax〉H + 〈x,Ay〉H) = �(〈y,Ax〉H)

= g(a,Ax) = ω(y, iAx). �

Corollary 1. For all A,B ∈ gl(H) we have

{fA, fB}H = f2AB. (7)

In particular,

{fA, fB}g = fAB+BA, (8)

{fA, fB}ω = f−i(AB−BA). (9)

Proof. For Hermitian A,B we have

{fA, fB}H(x) = g(gradA(x), gradB(x)) + i · ω(Hamf (x), Hamf (x))

= g(Ax,Bx) + i · ω(iAx, iBx) = 〈Ax,Bx〉H = 〈x,ABx〉H = 2fAB(x).

But 2AB = (AB +BA)+ i(−i(AB −BA)), where AB +BA = [A,B]+ and −i(AB −BA) =
−i[A,B]− are Hermitian; thus f[A,B]+ and f−i[A,B]− are real, so the thesis holds for the
Hermitian A,B. For general A,B it follows by complex linearity. �

The unitary action of U(H) on H is in particular Hamiltonian and induces a momentum
map µ : HR → u∗(H). The fundamental vector field associated with 1

i A ∈ u(H), where
A ∈ u∗(H) is Hermitian, reads ĩA, since

d

dt

∣∣∣∣
t=0

exp

(
− t

i
A

)
(x) = iA(x).

The Hamiltonian of ĩA is fA, so the momentum map is defined by〈
µ(x),

1

i
A

〉
= fA(x) = 1

2
〈x,Ax〉H.

But by our convention〈
µ(x),

1

i
A

〉
= i

2
Tr

(
µ(x)

1

i
A

)
= 1

2
Tr(µ(x)A),

so that Tr(µ(x)A) = 〈x,Ax〉H and finally, in the Dirac notation,

µ(x) = |x〉〈x|. (10)

Note that for A being Hermitian fA is the pullback fA = µ∗(Â) = Â ◦ µ, where
Â = 〈A, ·〉u∗ = 1

i A ∈ u(H). The linear functions Â generate T∗u∗(H), so that (8) and (9)
mean that the momentum map µ relates contravariant tensors G and � on H, respectively,
with the linear contravariant tensors R and � on u∗(H) corresponding to the Jordan and Lie
bracket, respectively. The Riemann–Jordan tensor R, defined in the obvious way,

R(ξ)(Â, B̂) = 〈ξ, [A,B]+〉u∗ = 1
2 Tr(ξ(AB + BA)), (11)
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is symmetric and the tensor,

�(ξ)(Â, B̂) = 〈ξ, [A,B]〉u∗ = 1

2i
Tr(ξ(AB − BA)), (12)

is the canonical Kostant–Kirillov–Souriau Poisson tensor on u∗(H). They form together the
complex tensor

(R + i · �)(ξ)(Â, B̂) = 2〈ξ,AB〉u∗ = Tr(ξAB) (13)

and the momentum map relates this tensor with the dual Hermitian product:

µ∗(G + i · �) = R + i · �. (14)

Example. For H = C2 consider an orthonormal basis in u∗(2) consisting of

U =
(

1 0
0 1

)
, X =

(
1 0
0 −1

)
, Y =

(
0 1
1 0

)
, Z =

(
0 i
−i 0

)
and the associated coordinates u, x, y, z, where u(A) = 1

2 Tr(UA), etc. In these coordinates
the Poisson tensor reads

� = 2(z∂x ∧ ∂y + x∂y ∧ ∂z + y∂z ∧ ∂x)

and the Riemann–Jordan tensor reads

R = ∂u ∨ (2x∂x + 2y∂y + 2z∂z) + u(∂u ∨ ∂u + ∂x ∨ ∂x + ∂y ∨ ∂y + ∂z ∨ ∂z).

The rank of �(u, x, y, z) is 0 if x2 + y2 + z2 = 0 and 2 if x2 + y2 + z2 > 0. The rank of
R(u, x, y, z) is 0 at (u, x, y, z) = 0; it is 2 for u = 0 and x2 + y2 + z2 > 0; it is 3 for
x2 + y2 + z2 = u2 > 0 and it is 4 for x2 + y2 + z2 �= u2 > 0.

The image µ(H\{0}) is the cone

P1(H) = {|x〉〈x| : x �= 0}
of non-negatively defined Hermitian operators ξ = |x〉〈x| of rank 1. The operator ξ is
proportional to the one-dimensional projection ξ/‖ξ‖, so ξ 2 = ‖ξ‖ξ , where ‖ξ‖ = ‖x‖2

is the operator norm of ξ . The manifold P1(H) is foliated by U(H)-coadjoint orbits being
complex projective spaces D1

r (H) = {|x〉〈x| : ‖x‖ = r}, r > 0. In particular, the momentum
map image of the (2n-1)-dimensional sphere SH = {x ∈ H : ‖x‖2 = 〈x, x〉H = 1} is the
complex projective space D1(H) = {|x〉〈x| : ‖x‖ = 1} of one-dimensional projectors.

The coadjoint orbits O in u∗(H) possess canonical symplectic forms ηO which build
together the Poisson structure �. These forms, as the inverses of �|O, are characterized by

ηO
ξ ([A, ξ ], [B, ξ ]) = 〈[A, ξ ], B〉u∗(H) = −〈ξ, [A,B]〉u∗ . (15)

Indeed, the vectors [A, ξ ] = 1
i [A, ξ ]− form the tangent space of the U(H)-orbit at ξ and ηO

is the inverse of �|O. Due to invariance of the scalar product on u∗(H):

�ξ(Â, B̂) = 〈ξ, [A,B]〉u∗(H) = 〈[ξ,A], B〉u∗(H) = 〈[ξ,A], B̂〉. (16)

Hence #�ξ(Â) = [ξ,A] and

#ηr
ξ ([ξ,A]) = (#�ξ)

−1([ξ,A]) = Â,

so

ηr
ξ ([A, ξ ], [B, ξ ]) = 〈

#ηr
ξ ([A, ξ ]), [B, ξ ]

〉 = −〈Â, [B, ξ ]〉
= −〈A, [B, ξ ]〉u∗(H) = −〈ξ, [A,B]〉u∗(H).

The image #R(T∗u∗(H)) of the tensor R is not an involutive (generalized) distribution, so
its inverse σ = R−1 can be understood only as a ‘partial’ covariant tensor on u∗(H),
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i.e. as a ‘partial symmetric 2-form’ which at ξ ∈ u∗(H) is defined only on vectors from
#Rξ(T∗

ξu
∗(H)). There is a completely analogous characterization of the tensor σ to that of η.

Both characterizations can be summarized as follows.

Proposition 1.

(a) The symplectic form ηO on the U(H)-orbit O is characterized by

ηO
ξ ([A, ξ ], [B, ξ ]) = 〈[A, ξ ], B〉u∗(H) = −〈ξ, [A,B]〉u∗ , (17)

where A,B ∈ u∗(H) are arbitrary Hermitian operators.
(b) The ‘partial tensor’ σ on u∗(H) is characterized by

σξ ([A, ξ ]+, [B, ξ ]+) = 〈[A, ξ ]+, B〉u∗(H) = 〈ξ, [A,B]+〉u∗ ., (18)

where A,B ∈ u∗(H) are arbitrary Hermitian operators.

Let us observe that the ‘partial tensor’ σ , when restricted to any D1
r (H), induces a Riemannian

structure σ r which, together with the symplectic structure ηr = ηD1
r (H), induces a Kähler

structure.

Proposition 2.

(a) The tensor σ r being the restriction of the ‘partial tensor’ σ to the U(H)-orbit D1
r (H)

through ξ = µ(x), r2 = ‖ξ‖, is proportional to the original scalar product on u∗(H):

σ r
ξ ([A, ξ ], [B, ξ ]) = 1

‖ξ‖〈[A, ξ ], [B, ξ ]〉u∗(H). (19)

(b) The (1, 1)-tensor J on P1(H), Jξ (A) = 1
‖ξ‖ [A, ξ ], satisfies J 3 = −J and induces a

complex structure rJ on every D1
r (H). Moreover,

ηr
ξ ([A, ξ ], rJξ ([B, ξ ])) = σ r

ξ ([A, ξ ], [B, ξ ]), (20)

and

ηr
ξ (

rJξ ([A, ξ ]), rJξ ([B, ξ ])) = ηr
ξ ([A, ξ ], [B, ξ ]), (21)

i.e. (D1
r (H), rJ , σ r , ηr) is a Kähler manifold for each r > 0.

Proof. Observe first that, due to the Leibniz rule,

[A, ξ ] = 1

‖ξ‖ [A, ξ 2] = 1

‖ξ‖ [[A, ξ ], ξ ]+.

Then, in view of (18),

σ r
ξ ([A, ξ ], [B, ξ ]) = 1

‖ξ‖2
〈ξ, [[A, ξ ], [B, ξ ]]+〉u∗(H) = 1

2‖ξ‖2
Tr(ξ ◦ [[A, ξ ], [B, ξ ]]+).

But

Tr(ξ ◦ [[A, ξ ], [B, ξ ]]+) = Tr(ξ ◦ [A, ξ ] ◦ [B, ξ ] + ξ ◦ [B, ξ ] ◦ [A, ξ ])

= Tr([A, ξ 2] ◦ [B, ξ ] − [A, ξ ] ◦ ξ ◦ [B, ξ ] + ξ ◦ [B, ξ ] ◦ [A, ξ ])

= Tr([A, ξ 2] ◦ [B, ξ ]) = ‖ξ‖Tr([A, ξ ] ◦ [B, ξ ])

= 2‖ξ‖〈[A, ξ ], [B, ξ ]〉u∗(H)

that proves (19).
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To prove that J is a complex structure on every orbit, let us recall that ξ 2 = ‖ξ‖ξ . Passing
to ξ ′ = ξ/‖ξ‖ if necessary, we can assume for all further calculations that ‖ξ‖ = 1 so that
Jξ (A) = [A, ξ ]. Hence,

[[[A, ξ ], ξ ], ξ ] = −1

i
[(Aξ 2 − 2ξAξ + ξ 2A), ξ ]− = −1

i
[(Aξ 3 − ξ 3A] = −[A, ξ ] (22)

and (19) follows. Moreover, since vectors [A, ξ ] form the tangent space TξD1
r (H), (22)

shows that J reduced to D1
r (H) is an almost-complex structure rJ . We shall show that the

Nijenhuis torsion of rJ vanishes, so the structure is integrable. To do this, we must show
that the distribution in the complexified tangent bundle TD1

r (H) ⊗ C which corresponds to
eigenvectors of complexified rJ with the eigenvalue i is involutive. But this distribution is
generated by complex vector fields T for T ∈ gl(H), where T (ξ) = ξT (1 − ξ). Indeed,

Jξ (ξT (1 − ξ)) = [ξT (1 − ξ), ξ ] = 1

i
(ξT (1 − ξ)ξ − ξ 2T (1 − ξ)) = i · ξT (1 − ξ)

and this is a generating set due to the decomposition

T = (ξT ξ + (1 − ξ)T (1 − ξ)) + (1 − ξ)T ξ + ξT (1 − ξ)

into eigenvectors of J with eigenvalues 0, −i and i, respectively. The bracket of vector fields
[T 1, T 2]vf reads

[T 1, T 2]vf (ξ) = ξT1(1 − ξ)T2(1 − ξ) − ξT2ξT1(1 − ξ) − ξT2(1 − ξ)T1(1 − ξ)

+ ξT1ξT1(1 − ξ) = ξ(T1T2 − T2T1)(1 − ξ) = ([T1, T2]−)

that proves involutivity.
Finally, it is sufficient to combine (17) and (19) to get (20). Then

ηr
ξ (

rJξ ([A, ξ ]), rJξ ([B, ξ ])) = σ r
ξ (rJξ ([A, ξ ]), [B, ξ ]) = 〈rJξ ([A, ξ ]), [B, ξ ]〉u∗(H)

= 〈[[A, ξ ], ξ ], [B, ξ ]〉u∗(H) = −〈[[[A, ξ ], ξ ], ξ ], B〉u∗(H)

= 〈[[A, ξ ], B〉u∗(H) = ηr
ξ ([A, ξ ], [B, ξ ])

that proves (21). �

Proposition 3. There is an identification of the orthogonal complement of the vector x ∈ H
with the tangent space to the U(H)-orbit through ξ = µ(x) in u∗(H). For y, y ′ ∈ H
orthogonal to x with respect to the Hermitian product, the vectors (µ∗)x(y), (µ∗)x(y ′) are
tangent to the orbit through ξ and

σ r
ξ ((µ∗)x(y), (µ∗)x(y ′)) = g(y, y ′), (23)

ηr
ξ (, (µ∗)x(y ′)) = ω(y, y ′), (24)

rJµ(x)((µ∗)x(y)) = (µ∗)x(Jy). (25)

Proof. Since

(µ∗)x(y) = P x
y = |y〉〈x| + |x〉〈y|

can be written as P x
y = [Ay, ξ ], where Ay is a Hermitian operator such that Ax = iy and

Ay = −i ‖y‖2

‖x‖2 x, the operators P x
y , P x

y ′ , viewed as vectors in u∗(H), are tangent to the orbit
through ξ . Then, due to (27),

σ r
ξ

(
P x

y , P x
y ′
) = 1

2‖x‖2
Tr

(
P x

y ◦ P x
y ′
) = 1

2‖x‖2
Tr(‖x‖2 · |y〉〈y ′| + 〈y, y ′〉H · |x〉〈x|)

= 1

2‖x‖2
(‖x‖2(〈y ′, y〉H + 〈y, y ′〉H)) = �(〈y, y ′〉H) = g(y, y ′).
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To prove (24), we use (17):

ηr
ξ

(
P x

y , P x
y ′
) = −〈ξ, [Ay,Ay ′ ]〉u∗(H) = −1

2
Tr(ξ ◦ [Ay,Ay ′ ])

= −1

2
〈x, [Ay,Ay ′ ]x〉H = − 1

2i
(〈Ayx,Ay ′x〉H − 〈Ay ′x,Ayx〉H)

= −�(〈iy, iy ′〉H) = ω(y, y ′).

Finally, (25) follows directly from ω(y ′, Jy) = g(y ′, y) and (20). �

The above theorem says that the Kähler manifold
(
D1

r (H), rJ , σ r , ηr
)

comes from a sort
of a ‘Kähler reduction’ of the original linear Kähler manifold (HR, J, g, ω). In particular,
the symplectic manifold D1

r (H) is the symplectic reduction of (HR, ω) with respect to the
isotropic submanifold Sr = {x ∈ H : ‖x‖ = r}. The characteristic foliation of ω|Sr

consists
of orbits of the group S1 = {z ∈ C : |z| = 1} acting on H by multiplication. The fundamental
vector field of this action is

−ĩI = pk∂qk
− qk∂pk

which is simultaneously a Killing vector field for the Riemannian metric g. Therefore g

induces a Riemannian metric on D1
r (H), etc.

3. Smooth manifold structure on Pk(H)

Recall that the space of non-negatively defined operators from gl(H), i.e. of those ρ ∈ gl(H)

which can be written in the form ρ = T †T for a certain T ∈ gl(H), we denote by P(H). It is
a cone as being invariant with respect to the homoteties by λ with λ � 0. The set of density
states D(H) is distinguished in the cone P(H) by the equation Tr(ρ) = 1, so we will regard
P(H) and D(H) as embedded in u∗(H).

The space D(H) is a convex set in the affine hyperplane in u∗(H), determined by the
equation Tr(τ ) = 1. The tangent spaces to this affine hyperplane are therefore canonically
identified with the space of Hermitian operators with trace 0. It is known that the set of extreme
points of D(H) coincides with the set D1(H) of pure states; i.e. the set of one-dimensional
orthogonal projectors |x〉〈x| (see corollary 3). Hence every element of D(H) is a convex
combination of points from D1(H). The space D1(H) of pure states can be identified with the
complex projective space PH � CP n−1 via the projection H\{0} � x �→ |x〉〈x| ∈ D1(H)

which identifies the points of the orbits of the C\{0}-group action by complex homoteties. We
have already seen that D1(H) is canonically a Kähler manifold. This will be the starting point
for the study of geometry of the set D(H) of all density states.

The (co)adjoint action of the group U(H) in u∗(H) induces its action on the positive
cone P(H) and on the space of density states. This action is transitive on pure states but it
is no longer transitive on subsets Dk(H), k > 1, where Dk(H) = D(H) ∩ Pk(H) and Pk(H)

consists of non-negative operators of rank k. The rank is understood clearly as the rank of the
corresponding operator (or matrix, if a basis in H is chosen). The intersection of D(H) with
any Weyl chamber in a Cartan subalgebra in u∗(H) is an (n − 1)-dimensional simplex, while
the intersection of Dk(H) is the (k − 1)-skeleton of this simplex. However, the dimension of
the orbit may vary even for points from a chosen Dk(H) if k > 1. Thus, the set of density
states is a union of smooth manifolds—orbits of U(H)—but the differentiable structure of the
stratum Dk(H) is a priori not clear (for k > 1), since the decomposition into orbits is not a
regular foliation; i.e. Dk(H) is the union of a family of various submanifolds of u∗(H) which
differ even by dimensions. By the differential structure we mean here the differential structure
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inherited from u∗(H), so that the smooth curves in D(H) and hence the tangent spaces are
uniquely defined.

Our aim in this section is to understand this differential structure. Of course, the interior of
D(H), namely Dn(H), is an open subset, so a submanifold in the affine subspace of trace = 1
Hermitian operators and the real question is only the boundary, consisting of those density
states ρ for which det(ρ) = 0. The best situation would be if the boundary were a submanifold,
but this is not true in dimensions n > 2 as will be shown later. The stratification into U(H)-
orbits is too small, since, as it will appear later, the subsets Dk(H) are coarser submanifolds
in u∗(H). We will show also that the stratification by rank is the maximal one in the sense
that the vectors tangent to D(H) at ρ ∈ Dk(H) must be tangent to Dk(H) itself, so the largest
u∗(H)-submanifold through ρ ∈ Dk(H) contained in D(H) is Dk(H).

We start by fixing an orthonormal basis in H which allows us to identify u∗(H) with
the space u∗(n) of Hermitian (n × n)-matrices which is canonically an n2-dimensional real
manifold with respect to the identification

u∗(n) � (aij ) �→ (
(aii)

n
1, (aij )i<j

) ∈ Rn × Cn(n−1)/2.

By P(n) we denote the space of non-negatively defined matrices from u∗(n) by Pk(n) the
subset of rank k matrices from P(n), etc. Let us denote by Pk

J (n) the set of matrices
A = (aij )

n
i,j=1 ∈ P(n) being of rank k and such that the minor det[(ars)r,s∈J ] associated with

a set of indices J = {i1, . . . , ik} ⊂ {1, . . . , n} is non-vanishing4. The next lemma shows that
any matrix from Pk

J (n) can be reconstructed from its rows (or columns, since it is Hermitian)
indexed by J .

Lemma 2. Let A = (aij )
n
i,j=1 ∈ Pk

J (n), so that the matrix (ars)r,s∈J has the inverse (ars)r,s∈J .
Then the matrix A is uniquely determined by {(aij ) : i ∈ J, j = 1, . . . , n} according to the
formula

aij =
∑
r,s∈J

aira
rsajs . (26)

Proof. The matrix A being non-negatively defined is of the form T †T for certain (n×n)-matrix
T, so that aij is the Hermitian product 〈αi, αj 〉 of columns of T with respect to the standard
Hermitian product (2). The matrix T is not uniquely determined. However, the fact that A is
of rank k with the non-vanishing minor associated with J means that the columns αj , j ∈ J

are linearly independent and span the rest of the columns of T. But the Hermitian product on
the subspace in Cn spanned by {αj : j ∈ J } is given by the formula

〈x, y〉Cn =
∑
r,s∈J

〈x, αr〉Cnαrs〈αs, y〉Cn , (27)

where (αrs)r,s∈J is the inverse of the matrix (〈αr, αs〉Cn )r,s∈J . The proof of (27) is immediate,
since the rhs of (27) is C-linear with respect to y, anti-linear with respect to x and equals
〈αi, αj 〉Cn for x = αi, y = αj , i, j ∈ J , by definition. Since aij = 〈αi, αj 〉Cn , we get the
formula (26) directly from (27). �

Remark. It is worth noticing that the formula (27) is similar to the one describing the Dirac
bracket on constraint manifolds induced by second class constraints.

For J as above define a linear map

J : u∗(n) → u∗(k) × C(n−k)k � Rk × C(2nk−k2−k)/2 � R2nk−k2

4 The set J is not to be confused in the following with the complex structure denoted accidentally by the same letter.
From the context, however, the notion of J is always obvious.
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by

J

(
(aij )

n
i,j=1

) = ((aij )i,j∈J , (ars)r /∈J,s∈J )). (28)

In particular, if we work with the principal minor, i.e. J = {1, . . . , k}, then J associates
with a Hermitian matrix its first k columns with removed, say, upper-triangular part which is
irrelevant due to hermicity or, equivalently, its first k rows with the removed lower-triangular
part.

For A ∈ u∗(n) by J,A we denote the map J,A(X) = J (X) − J (A):

J,A

(
(xij )

n
i,j=1

) = ((xij − aij )i,j∈J , (xrs − ars)r /∈J,s∈J )). (29)

With some abuse of notation, its restriction to Pk(n) we will denote by the same symbol. It is
clear from the above lemma that the map J is continuous and injective on Pk

J (n). Thus, for
A ∈ Pk

J (n), the map J,A is also continuous and injective on Pk
J (n).

Conversely, every point

((yij )i,j∈J , (yrs)r /∈J,s∈J ))

of u∗(k) × C(n−k)k � R2nk−k2
, sufficiently close to 0, is the value J,A(X) for a certain

X ∈ Pk
J (n). Indeed, adding a small Hermitian matrix to (aij )i,j∈J will not change its

invertibility. Hence we have to reconstruct X out of J (X), i.e out of the columns (and rows,
since X should be Hermitian) with indices belonging to J and knowing that (xij )i,j∈J has an
inverse, say, (xrs)r,s∈J . Here xij = aij + yij for j ∈ J . An obvious choice is the formula (26),
i.e.

xij =
∑
r,s∈J

xirx
rsxjs .

The only thing to be checked is that X = (xij )
n
i,j=1 defined in this way is non-negatively

defined and of rank k. Assume, for simplicity of notation, that J = {1, . . . , k}. First, we can
find vectors β1, . . . , βk ∈ Ck such that

xij = 〈βi, βj 〉Ck (30)

for i, j = 1, . . . , k. This can be done up to a unitary transformation. For example, βi can be
columns of the matrix

√
(xij )

k
i,j=1. Then, we find (this time unique) vectors βk+1, . . . , βn ∈ Ck

satisfying the conditions xij = 〈βi, βj 〉Ck , i = k + 1, . . . , n, j = 1, . . . , k. It is easy to see
now that, due to the formula (27), we have (30) for all i, j = 1, . . . , n. This immediately
implies that X is non-negatively defined and of rank k. Moreover, since

xij =
∑
r,s∈J

(air + yir )a
rs
y (yjs + ajs), (31)

where
(
ars

y

)
r,s∈J

is the inverse of the matrix (ars + yrs)r,s∈J , the matrix elements xij rationally

depend on yml , so that −1
J,A is smooth, thus also regular, as a function from a neighbourhood

of 0 in R2nk−k2
into u∗(n), so Pk(n) is a submanifold in u∗(n). To see the image of the

differential of −1
J,A at 0, i.e the tangent space TAPk(n), let us consider the linear (with respect

to y) part (vij ) of the rhs of (31):

vij =
∑
r,s∈J

(yira
rsajs − aira

rmymla
lsajs + aira

rsyjs). (32)

To see this better, let us change the orthogonal basis of Cn for such that J = {1, . . . , k} and A

is diagonal, aii = λi, λi = 0 for i > k. Then one can easily find that (32) takes the form

vij =
{

0, if i, j > k

yij , if j � k.
(33)
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This means that in the image are arbitrary Hermitian matrices V = (vij )
n
i,j=1 such that vij = 0

for i, j > k that can be written in a coordinate-free way as 〈V x, y〉Cn = 0 for all x, y ∈ Ker(A).
Note that the manifold Pk(H) is connected. Indeed. it consists of connected orbits of the
group U(H) which meet a Weyl chamber as the (k − 1)-dimensional skeleton of a simplex.
However, the connected components of this skeleton are identified by the action of the Weyl
group, so they form topologically a (k−1)-dimensional simplex which is obviously connected.
Therefore we have proved the following.

Theorem 1. Let A ∈ Pk
J (n). Then the map J,A : Pk(n) → R2nk−k2

defined by (29) is a
local homeomorphism from a neighbourhood of A in Pk(n) onto a neighbourhood of 0 in
u∗(k) × C(n−k)k � R2nk−k2

. Moreover, the collection of the maps −1
J,A : WJ,A → Pk(n) ⊂

u∗(n) defined on sufficiently small neighbourhoods WJ,A of 0 by the formula (31) constitutes a
smooth manifold structure on Pk(n) which makes it into a smooth and connected submanifold
of u∗(n). The tangent space TAPk(n), viewed as a subspace of u∗(n), consists of matrices
V ∈ u∗(n) satisfying 〈V x, y〉Cn = 0 for all x, y ∈ Ker(A).

Remark. In section 5 we obtain the manifold structure on Pk(n) much simpler as the structure
of an GL(n, C)-orbit. But we find that lemma 2 and theorem 1 are of some interest per se
providing explicit coordinate systems.

The next theorem shows that smooth curves in u∗(n) which lay in P(n) cannot cross
Pk(n) transversally, i.e. Pk(n) is in a sense an edge for Pk+1(n) if k < n − 1.

Theorem 2. Let γ : R → u∗(n) be a smooth curve in the space of Hermitian matrices which
lies entirely in P(n). Then γ is tangent to the stratum Pk(n) it belongs, i.e. γ (t) ∈ Pk(n)

implies γ̇ (t) ∈ Tγ (t)Pk(n).

Proof. Of course, it is enough to prove the above for an arbitrary t ∈ R, say, t = 0. Assume
therefore that A = γ (0) ∈ Pk(n). Take x ∈ Ker(A). Since〈

γ (�t) − γ (0)

�t
x, x

〉
� 0

for �t � 0, we have 〈γ̇ (0)x, x〉 � 0. Taking in turn �t � 0 we see in a similar way that
〈γ̇ (0)x, x〉 � 0, so

〈γ̇ (0)x, x〉 = 0. (34)

By polarization of (34) we get

〈γ̇ (0)x, y〉 + 〈γ̇ (0)y, x〉 = 0 (35)

for all x, y ∈ Ker(A). But γ̇ (0) is Hermitian, so

〈γ̇ (0)y, x〉 = 〈y, γ̇ (0)x〉
and (35) yields that the real part �(〈γ̇ (0)x, y〉) is 0 for all x, y ∈ Ker(A). On the other hand,
the kernel of A is a complex subspace and

�(〈γ̇ (0)x, i · y〉) = �(〈γ̇ (0)x, y〉)
so

〈γ̇ (0)x, y〉 = 0 (36)

for all x, y ∈ Ker(A). But, according to theorem 1, (36) means that γ̇ (0) ∈ TAPk(n). �
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4. Smooth stratification of density states

The set D(H) of density states on H is the intersection of the cone P(H) with the affine
subspace {A ∈ u∗(H) : Tr(A) = 1} or, in other words, it is the level set of the function
Tr : P(H) → R corresponding to the value 1. Since Tr(tρ) = t Tr(ρ) and Pk is invariant with
respect to homoteties with positive t, it is clear that Tr is a regular function on each Pk(H) so
that Dk(H) is canonically a smooth manifold. Since topologically Pk(H) � Dk(H) × R, the
manifolds Dk(H) are connected. All these observations together with theorems 1 and 2 can
be summarized in the following.

Theorem 3. The spaces Dk(H) of density states of rank k, k = 1, . . . , n, are smooth and
connected submanifolds in u∗(H) of (real) dimension 2nk − k2 − 1. The tangent space
TρDk(H) is characterized as the space of those Hermitian operators T of trace 0 which satisfy
〈T x, y〉 = 0 for all x, y ∈ Ker(ρ). Moreover, the stratification into submanifolds Dk(H) is
maximal in the sense that every smooth curve in u∗(H), which lies entirely in D(H), at every
point is tangent to the strata Dk(H) to which it actually belongs.

Corollary 2. The boundary ∂D(H) = ⋃
k<n Dk(H) of the set of density states is not a smooth

submanifold of u∗(H) if n = dimH > 2.

Proof. If n > 2 then the boundary ∂D(H) has at least two different strata and the vectors
orthogonal to, say, the stratum D1(H) of pure states are not tangent to ∂D(H). But the
dimension of D1(H) is smaller than the topological dimension of ∂D(H). �

Remark. It is well known that for n = 2 the convex set of density states is affinely equivalent
to the three-dimensional ball and its boundary—to the two-dimensional sphere, so that it is a
smooth manifold.

In the last problem concerning the geometry of density states we will consider is the
question of affine parts of the manifolds Dk(H). It is motivated by the fact that the set D1(H)

of pure states is exactly the set of extremal elements of D(H), so it does not contain intervals,
but the other strata Dk(H) with k > 1 must do as shows the following theorem. Recall that
a non-empty closed convex subset K0 of a closed convex set K is called a face (or extremal
subset) of K if any closed segment in K with an interior point in K0 lies entirely in K0; a point
x is called an extreme point of K if the set {x} is a face of K.

Theorem 4. If ρ ∈ Dk(H) then the affine space in u∗(H) which is tangent to Dk(H) at ρ

intersects D(H) along a (k2 − 1)-dimensional convex body which is affinely equivalent to the
set D(k) of density states in dimension k. This convex body is exactly the face of D(H) at ρ.
In other words, the face of D(H) at ρ ∈ Dk(H) is affinely equivalent to D(k).

Proof. Let us take coordinates in u∗(H), i.e. let us choose an orthonormal basis in H in which
ρ is represented by a diagonal matrix (ρij ), ρij = δi

jλi , where λi = 0 for i > k. According
to the form of TρDk(H), matrices (xij ) which belong to ρ + TρDk(H) have entries xij with
i, j > k equal to 0. If they belong as well to D(H), also xij = 0 if i > k or j > k. Indeed,
since xij = 〈αi, αj 〉 for certain vectors zi ∈ Cn, we have xii = ‖αi‖2 = 0, so αi = 0, for
i > k, and further xij = 〈αi, αj 〉 = 0 if i > k or j > k. In other words, the only non-zero part
of X is the block (xij )

k
i,j=1 which is therefore an element of D(k). Conversely, every matrix X

with such a block form belongs simultaneously to D(H) and, since (X−ρ)ij = 0 for i, j > k,
to ρ + TρDk(H). To see that (ρ + TρDk(H))∩D(H) is exactly the face of D(H) at ρ, consider
a segment in D(H) for which ρ is an interior point. The open segment is clearly a smooth
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curve in D(H), so, in view of theorem 3, it is tangent to Dk(H) at ρ; thus belongs entirely to
ρ + TρDk(H). �

Corollary 3. Extremal points of D(H) are exactly pure states.

5. Geometry of u∗(H)

Let us mention that a major part of what has been said about the differential structure of the
space Pk(H) of rank-k positive operators can be repeated for the space of all rank-k Hermitian
operators. Denote by u∗

k+,k−(H) the set of those Hermitian operators ξ whose spectrum contains
k+ positive and k− negative eigenvalues (counted with multiplicities), respectively. Thus the
rank of ξ is k = k+ + k− and Pk(n) = u∗

k,0(n).
Fixing an orthogonal basis in H will identify u∗

k+,k−(H) with the space u∗
k+,k−(n) of n × n

Hermitian matrices of rank k with the corresponding spectrum. Denote by D
k+
k− the diagonal

matrix diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0) with 1 coming k+-times and −1 coming k−-times.
Denote by 〈·, ·〉k+,k− the ‘semiHermitian’ product in Cn represented by D

k+
k− :

〈a, b〉k+,k− =
k+∑

j=1

ajbj −
k++k−∑

j=k++1

ajbj . (37)

It is easy to see the following.

Proposition 4. Any ξ = (aij ) ∈ u∗
k+,k−(n) can be written in the form ξ = T †Dk+

k−T for
certain T ∈ GL(n, C). In other words the entries of the matrix ξ are semiHermitian products
aij = 〈αi, αj 〉k+,k− , where αi denotes the ith column of T.

Proof. We can diagonalize ξ by means of an unitary matrix U,

UξU † = diag(λ1, . . . , λn),

where λ1 � · · · � λn, so λ1, . . . , λk+ > 0 and λk++1, . . . , λk++k− < 0. Hence ξ = T †Dk+
k−T for

T = CU with

C = diag(
√

|λ1|, . . . ,
√|λk++k−|, 1 . . . , 1). �

Now, we can reformulate lemma 2 for u∗
k+,k−(n) instead of Pk(n). The proof is essentially

the same with the difference that we use the semiHermitian product 〈·, ·〉k+,k− in Cn instead of
〈·, ·〉Cn .

Lemma 3. Let ξ = (aij )
n
i,j=1 ∈ u∗

k+,k−(n). Assume that the matrix (ars)r,s∈J has the inverse
(ars)r,s∈J for certain k = (k+ + k−)-element subset J = {j1, . . . , jk} ⊂ {1, . . . , n}. Then the
matrix ξ is uniquely determined by {(aij ) : i ∈ J, j = 1, . . . , n} according to the formula

aij =
∑
r,s∈J

aira
rsajs . (38)

One can now prove that u∗
k+,k−(H) are submanifolds of u∗(H) in completely parallel way to

the case of Pk(H). However, proposition 4 suggests an easier (although less constructive)
way to do it. Namely, we can see u∗

k+,k−(H) as an orbit of a natural GL(H) action on u∗(H).

Theorem 5. The family

{u∗
k+,k−(H) : k+, k− � 0, k = k+ + k− � n} (39)
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of subsets of u∗(H) is exactly the family of orbits of the smooth action of the group GL(H)

given by

GL(H) × u∗(H) � (T , ξ) �→ T ξT † ∈ u∗(H). (40)

In particular, every u∗
k+,k−(H) is a connected submanifold of u∗(H) and the tangent space to

u∗
k+,k−(H) at ξ is characterized by

B ∈ Tξu
∗
k+,k−(H) ⇔ ∀x, y ∈ Ker(ξ)[〈Bx, y〉H = 0]. (41)

Moreover, the following are equivalent:

(1) u∗
k+,k−(H) intersects P(H),

(2) u∗
k+,k−(H) is contained in P(H),

(3) k− = 0,
(4) u∗

k+,k−(H) = Pk(H), k = k+ + k−.

Proof. The proof that (40) is a group of smooth action is straightforward. Proposition 4 shows
that u∗

k+,k−(H) is contained in the GL(H)-orbit of D
k+
k− .

On the other hand, although the spectrum is not fixed on every GL(H)-orbit, the number
of positive and negative eigenvalues (counted with multiplicities) are fixed along the orbit.
Indeed, if 〈x, ξx〉H > 0 (respectiely, 〈x, ξx〉H < 0) for x in a k+-dimensional (respectively,
k−-dimensional) linear subspace V+ (respectively V−), then 〈x, T ξT †x〉H = 〈T †x, ξT †x〉H > 0
(respectively 〈x, T ξT †x〉H = 〈T †x, ξT †x〉H < 0) for x in a k+-dimensional (respectively
k−-dimensional) linear subspace (T †)−1(V+) (respectively (T †)−1(V−)).

The corresponding infinitesimal action of v ∈ gl(H) is ξ �→ vξ + ξv† and the operators
ξv = vξ + ξv† clearly satisfy 〈x, ξvy〉H = 0 for all x, y ∈ Ker(ξ). Conversely, if for certain
B ∈ u∗(H) we have 〈Bx, y〉H = 0 for all x, y ∈ Ker(ξ), then B can be written in the form
vξ + ξv†. To see this, consider the splitting H = V1 ⊕ V2, where V2 = Ker(ξ) and V1 = V ⊥

2 .
According to this splitting ξ can be written in the operator matrix form

ξ =
(

ξ1 0
0 0

)
,

where ξ1 is Hermitian and invertible. Similarly, B has the form

B =
(

B11 B12

B21 0

)
,

where B
†
11 = B11 and, in the obvious sense, B21 = B

†
12. Now, it is easy to see that B = vξ + ξv†,

where

v =
( 1

2B11ξ
−1
1 ξ1B12

B21ξ
−1
1 0

)
that proves (41).

Finally, if u∗
k+,k−(H) intersects P(H), then it contains an element with non-negative

spectrum. But the signs of the elements of the spectrum are constant along a GL(H)-orbit
which means that k− = 0 and u∗

k+,k−(H) = Pk(H) ⊂ P(H). �

Note that the fundamental vector fields ã(ξ) = −aξ − ξa† of the GL(H)-action satisfy

the commutation rules [̃a, b̃]vf = [̃a, b]−.
The next result shows that the foliation into submanifolds u∗

k+,k−(H) can be obtained
directly from tensors � and R. We know already that the (generalized) distribution D� induced
by � is generated by vector fields �A(ξ) = #�ξ(Â) = [A, ξ ] and the generalized distribution
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DR induced by R is generated by vector fields RA(ξ) = #Rξ(Â) = [A, ξ ]+. The following is
straightforward.

Theorem 6. The family {�A,RA : A ∈ u∗(H)} of linear vector fields on u∗(H) is the family
of fundamental vector fields of the GL(H)-action:

�A(ξ) = 1

i
(Aξ − ξA) = −(iA)ξ − ξ(iA)† = ĩA(ξ), (42)

RA(ξ) = Aξ + ξA = Aξ + ξA† = −Ã(ξ). (43)

In particular,

[�A,�B ]vf = �[A,B], [RA,RB]vf = �[A,B], [RA,�B]vf = R[A,B], (44)

so the (generalized) distribution induced jointly by the tensors � and R is completely integrable
and u∗

k+,k−(H) are the maximal integrate submanifolds.

Corollary 4. The generalized distributions Dgl = DR + D�, D� and D0 = DR

⋂
D�

on u∗(H) are involutive and can be integrated to generalized foliations Fgl,F� and F0,
respectively. The leaves of the foliation Fgl are the orbits of the GL(H) action ξ �→ T ξT †,
the leaves of F� are the orbits of the U(H)-action.

Denote by J̃ and R̃ the (1, 1)-tensors on u∗(H), viewed as a vector bundle morphism
induced by the contravariant tensors � and R, respectively,

J̃ , R̃ : Tu∗(H) → Tu∗(H),

J̃ξ (A) = [A, ξ ] = �ξ(A),

R̃ξ (A) = [A, ξ ]+ = Rξ(A),

where A ∈ u∗(H) � Tξu
∗(H). The image of J̃ is D� and the image of R̃ is DR .

Lemma 4. The tensors J̃ and R̃ commute and

J̃ξ ◦ R̃ξ (A) = R̃ξ ◦ J̃ξ (A) = [A, ξ 2]. (45)

Proof. We have

J̃ξ ◦ Rξ (A) = [[A, ξ ]+, ξ ].

But, as easily seen,

[[A, ξ ]+, ξ ] = [A, ξ 2] = [[A, ξ ], ξ ]+ = R̃ξ ◦ J̃ξ (A). (46)
�

Recall that U(H)-orbits O, i.e. the orbits with respect to the action of the subgroup
U(H) ⊂ GL(H), carry canonical symplectic structures ηO. The symplectic structure ηO is
U(H)-invariant, i.e. (O, ηO) is a homogeneous symplectic manifold. We will show that this
symplectic structure is a part of a canonical Kähler structure. We already know this structure
for the orbits P1

r (H).
Recall also that on u∗(H) we have the Riemannian metric induced by the scalar product

〈A,B〉u∗ = 1
2 Tr(AB) on u∗(H).

Theorem 7.

(a) The image of J̃ξ is TξO and Ker(J̃ξ ) is the orthogonal complement of TξO.
(b) J̃ 2

ξ is a self-adjoint (with respect to 〈·, ·〉u∗ ) and negatively defined operator on TξO.
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(c) The (1, 1)-tensor J on u∗(H) defined by

Jξ (A) = (−(J̃ξ )
2
|TξO

)− 1
2 J̃ξ (A) (47)

induces an U(H)-invariant complex structure J on every orbit O.
(d) The tensor

γO
ξ (A,B) = ηO

ξ (A,Jξ (B)) (48)

is an U(H)-invariant Riemannian metric on O and

γO
ξ (Jξ (A), B) = ηO

ξ (A,B). (49)

In particular, (O,J , ηO, γO) is a homogeneous Kähler manifold. Moreover, if ξ ∈ u∗(H)

is a projector and ξ ∈ O, then Jξ = J̃ξ and γO(A,B) = 〈A,B〉u∗ .

Remark. The tensor J is canonically and globally defined. It is however not smooth as
a tensor field on u∗(H). It is smooth on the open-dense subset of regular elements and, of
course, on every U(H)-orbit separately.

Proof.

(a) The vector fields �A(ξ) = [A, ξ ] = J̃ξ (A) are fundamental vector fields of the U(H)-
action, so TξO is the image of J̃ξ . Moreover, the invariance of the Riemannian metric
〈A,B〉u∗ ,

〈J̃ξ (A), B〉u∗ = 〈[A, ξ ], B〉u∗ = −〈A, J̃ξ (B)〉u∗, (50)

implies that

B ∈ Ker(J̃ξ ) ⇔ B ⊥ J̃ξ (u
∗(H)).

(b) The identity (50) means that J̃ ×
ξ = −J̃ξ , where J̃ ×

ξ is the adjoint operator to J̃ξ with
respect to the scalar product 〈A,B〉u∗ . Consequently,(

J̃ 2
ξ

)× = J̃ 2
ξ . (51)

Moreover, J̃ 2
ξ is negatively defined on TξO, since〈

J̃ 2
ξ (A),A

〉
u∗ = 〈[[A, ξ ], ξ ], A〉u∗ = −〈[A, ξ ], [A, ξ ]〉u∗ < 0,

for [A, ξ ] ∈ TξO, [A, ξ ] �= 0.
(c) The tensor J̃ is clearly U(H)-invariant:

J̃UξU †(UAU †) = [UAU †, UξU †] = U [A, ξ ]U † = U(J̃ξ (A))U †, (52)

so the tensor (−J̃ 2)−
1
2 and its composition J are U(H)-invariant. The tensor J defines

an almost complex structure on every orbit O, since

[(−J̃ 2)−
1
2 J̃ ]2 = (−J̃ 2)−1J̃ 2 = −I.

To show that this almost complex structure is integrable, it is sufficient to show that
the distribution N in the complexified tangent bundle TO ⊗ C which consists of
i-eigenvectors of (complexified) J is involutive. Since J , and therefore N , is invariant,
it is sufficient to check it at one point, say ξ ∈ O, with respect to the complexified Lie
algebra gl(H) = u∗(H) ⊗ C equipped with the bracket [a, b] = 1

i [ab − ba].
Let −κ2

1 , . . . ,−κ2
m, where κ1, . . . , κm > 0, be the eigenvalues of

(
J̃ 2

ξ

)
|TξO

counted with

multiplicities. The complexified J̃ξ , which with some abuse of notation we will denote by
the same symbol, has therefore eigenvalues ±iκk with eigenvectors a±

k , k = 1, . . . , m and
Jξ

(
a±

k

) = ±ia±
k . Thus Nξ is spanned by the vectors a+

k , k = 1, . . . , m, i.e. eigenvectors
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of J̃ξ , J̃ξ

(
a+

k

) = iκka
+
k with positive κk . This space is clearly a Lie subalgebra in gl(H),

since

Jξ

([
a+

k , a+
l

]) = [[
a+

k , a+
l

]
, ξ

] = [[
a+

k , ξ
]
, a+

l

]
+

[
a+

k ,
[
a+

l , ξ
]]

= [
iκka

+
k , a+

l

]
+

[
a+

k , iκla
+
l

] = i(κk + κl)
[
a+

k , a+
l

]
,

the vector
[
a+

k , a+
l

]
, if non-zero, is again an eigenvector of J̃ξ corresponding to a ‘positive’

eigenvalue i(κk + κl).
(d) The tensor

γO
ξ (A,B) = ηO

ξ (A,Jξ (B))

is clearly U(H)-invariant. From (50) and (51) it follows that J ×
ξ = −Jξ . Since J̃ and

J clearly commute, Jξ ([A, ξ ]) = [Jξ (A), ξ ], in view of (17),

ηO
ξ ([A, ξ ],Jξ ([B, ξ ])) = 〈[A, ξ ],Jξ (B)〉u∗(H) = 〈−Jξ ([A, ξ ]), B〉u∗(H) (53)

= −ηO
ξ (Jξ ([A, ξ ]), [B, ξ ]).

This immediately implies that γO is symmetric and proves (49). But (17) implies also
that

γO
ξ ([A, ξ ], [A, ξ ]) = ηO

ξ ([A, ξ ],Jξ ([A, ξ ])) = 〈[A, ξ ],Jξ (A)〉u∗(H) (54)

= 〈A,−J̃ξJξ (A)〉u∗(H).

But

−J̃ξJξ = (−J̃ 2)
1
2

is a positive operator, so

γO
ξ ([A, ξ ], [A, ξ ]) > 0

for [A, ξ ] �= 0.
Finally, if ξ is a projector, ξ 2 = ξ , then (cf (22))

J̃ 2
ξ ([A, ξ ]) = −[A, ξ ],

so Jξ = J̃ξ and (cf (54))

γO
ξ ([A, ξ ], [B, ξ ]) = 〈[A, ξ ],Jξ (B)〉u∗(H) = 〈[A, ξ ], [B, ξ ]〉u∗(H).

�

We have some similar results for the tensor R̃ which however are not completely
analogous, since the distribution DR is not globally integrable. The proofs are analogous,
so we omit them.

Theorem 8.

(a) The image DR(ξ) of R̃ξ is the orthogonal complement of Ker(R̃ξ ).
(b) R̃2

ξ is a self-adjoint (with respect to 〈·, ·〉u∗ ) and a positively defined operator on DR(ξ).
(c) The (1, 1)-tensor R on u∗(H) defined by

Rξ (A) = |(R̃ξ )|DR(ξ)|−1 ◦ R̃ξ (A) (55)

satisfies R3 = R.
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Corollary 5. The distribution D0 is the image of Jξ ◦ Rξ = Rξ ◦ Jξ . In other words,
D0(ξ) = {[A, ξ 2] : A ∈ u∗(H)}. Moreover, the foliation F0 is U(H)-invariant, J -invariant
and R-invariant, so that J and R induce on leaves of F0 a complex and a product structure,
respectively. The leaves of the foliation F0 are also canonically symplectic manifolds with
symplectic structures being restrictions of symplectic structures on the leaves of F�, so the
leaves of F0 are Kähler submanifolds of the U(H)-orbits in u∗(H).

Proof. The image of Jξ ◦ Rξ = Rξ ◦ Jξ is clearly contained in D0. Conversely, let
B ∈ D0(ξ) = D�

⋂
DR. According to (46), D0(ξ) is invariant with respect to both: Jξ

and Rξ and Jξ and Rξ are injective, thus surjective, on D0(ξ). The distribution D0 is
therefore generated by vector fields XA(ξ) = [A, ξ 2]. It is a matter of simple calculations
to show that these vector fields commute with the fundamental vector fields �B of the U(H)

as [XA,�B ]vf = X[B,A] that shows U(H) invariance of D0. One can also easily seen that
the restrictions of ξO to the leaves of F0 contained in O are non-degenerate. It follows also
directly from the explicit calculations we present below. �

Let us explain the above theorem in local coordinates, i.e. for the case of matrices.
Suppose that ξ = diag(λ1, . . . λn) ∈ u∗(n) is a diagonal matrix. For simplicity, it is better to
start already with the complexified structures; i.e. with gl(n) = u∗(n) ⊗ C equipped with the
bracket [a, b] = 1

i (ab − ba) and the Hermitian product 〈a, b〉gl = 1
2 Tr(a†b), so that u∗(n) is

a real Lie subalgebra in gl(n) with the induced scalar product. Let Ek
l be the matrix whose

only non-zero entry is 1 at the kth row and lth column. We have〈
Ek

l , E
r
s

〉
gl

= 1
2

(
δr
kδ

l
s

)
, (56)[

Ek
l , E

r
s

] = −i
(
δr
l E

k
s − δk

s E
r
l

)
, (57)

and [
Ek

l , E
r
s

]
+ = δr

l E
k
s + δk

s E
r
l , (58)

so that

J̃ξ

(
Ek

l

) = [
Ek

l , ξ
] = i(λk − λl)E

k
l . (59)

and

R̃ξ

(
Ek

l

) = [
Ek

l , ξ
]

+ = (λk + λl)E
k
l . (60)

In particular,

J̃ξ ◦ R̃ξ

(
Ek

l

) = [
Ek

l , ξ
2
] = i

(
λ2

k − λ2
l

)
Ek

l . (61)

Consequently,

J̃ 2
ξ

(
Ek

l

) = −(λk − λl)
2Ek

l (62)

and

R̃2
ξ

(
Ek

l

) = (λk + λl)
2Ek

l , (63)

so that

Jξ

(
Ek

l

) = i · sgn(λk − λl)E
k
l (64)

and

Rξ

(
Ek

l

) = sgn(λk + λl)E
k
l . (65)

The (complexified) tangent space TξO⊗C is spanned by those Ek
l for which λk −λl �= 0,

the space DR(ξ) ⊗ C is spanned by those Ek
l for which λk + λl �= 0, the space D0(ξ) ⊗ C is
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spanned by those Ek
l for which λ2

k − λ2
l �= 0, and the distribution N mentioned in the proof

of the theorem is spanned by Ek
l for which λk − λl > 0. The complexified symplectic form

reads

ηO
ξ

(
i(λk − λl)E

k
l , i(λr − λs)E

r
s

) = 〈
i(λk − λl)E

k
l , E

r
s

〉
gl

= −i(λk − λl)
1
2

(
δr
l δ

k
s

)
,

i.e.

ηO
ξ

(
Ek

l , E
r
s

) = 1

2i(λr − λs)

(
δr
l δ

k
s

)
, (66)

and the complexified Riemannian form

γO
ξ

(
Ek

l , E
r
s

) = ηO
ξ

(
Ek

l ,Jξ

(
Er

s

)) = 1

2|λr − λs |
(
δr
kδ

l
s

)
. (67)

As a basis in u∗(n) let us take

Ak
l = Ek

l + El
k, k � l, Bk

l = iEk
l − iEl

k, k < l. (68)

It is easy to see that this is an orthonormal basis and that

Jξ

(
Ak

l

) = sgn(λk − λl)B
k
l , Jξ

(
Bk

l

) = sgn(λl − λk)A
k
l (69)

and

Rξ

(
Ak

l

) = sgn(λk + λl)A
k
l , Jξ

(
Bk

l

) = sgn(λl + λk)B
k
l . (70)

Moreover,

ηO
ξ

(
Bk

l , A
r
s

) = δk
r δ

l
s

(λk − λl)
, ηO

ξ

(
Bk

l , B
r
s

) = ηO
ξ

(
Ak

l , A
r
s

) = 0, λk − λl, λr − λs �= 0

(71)

and

γO
ξ

(
Bk

l , A
r
s

) = 0, γO
ξ

(
Bk

l , B
r
s

) = γO
ξ

(
Ak

l , A
r
s

) = δk
r δ

l
s

|λk − λl| , λk − λl, λr − λs �= 0.

(72)

In other words

ηO
ξ =

∑
λk−λl �=0

1

(λk − λl)
· dbk

l ∧ dak
l , (73)

and

γO
ξ =

∑
λk−λl �=0

1

|λk − λl|
(
dbk

l ⊗ dbk
l + dak

l ⊗ dak
l

)
, (74)

where

bk
l = 〈

Bk
l , ·

〉
u∗, ak

l = 〈
Ak

l , ·
〉
u∗

are coordinates on u∗(n) such that Bk
l = ∂bk

l
, Ak

l = ∂ak
l
. The reduction of the symplectic form

ηO to the leaves of the foliation F0,(
ηO

ξ

)
|F0

=
∑

λ2
k−λ2

l �=0

1

(λk − λl)
· dbk

l ∧ dak
l , (75)

is clearly non-degenerate and constitutes, together with the reduced Riemannian structure(
γO

ξ

)
|F0

=
∑

λ2
k−λ2

l �=0

1

|λk − λl|
(
dbk

l ⊗ dbk
l + dak

l ⊗ dak
l

)
, (76)

a Kähler structure.
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Remark. Of course, when ξ is a projector, then λk = 1, 0, so λk − λl �= 0 ⇒ |λk − λl| = 1
and γO

ξ reduces to the canonical scalar product. Note also that the leaves of F� and F0 through
ξ coincide, except for the rare case when there are λ, λ′ �= 0 in the spectrum of ξ such that
λ + λ′ = 0. In particular, the foliations F� and F0 coincide when reduced to the subset P(H)

of non-negative operators or to the set D(H) of density states. On such leaves the product
structure R is trivially the identity.

6. Composite systems and separability

Suppose now that our Hilbert space has a fixed decomposition into the tensor product of two
Hilbert spaces H = H1 ⊗H2. This additional input is crucial in studying composite quantum
systems and it has a great impact on the geometrical structures we have considered. The rest
of this paper will be devoted to related problems.

Observe first that the tensor product map⊗
: H1 × H2 → H = H1 ⊗ H2 (77)

associates the product of rays with a ray, so it induces a canonical imbedding on the level of
complex projective spaces

Seg : PH1 × PH2 → PH = P(H1 ⊗ H2), (78)

(|x1〉〈x1|, |x2〉〈x2|) �→ |x1 ⊗ x2〉〈x1 ⊗ x2|. (79)

This imbedding of product of complex projective spaces into the projective space of the
tensor product is called in the literature the Segre imbedding [41]. The elements of the image
Seg(PH1 × PH2) in PH = P(H1 ⊗H2) are called separable pure states (with respect to the
decomposition H = H1 ⊗ H2).

The Segre imbedding is related to the (external) tensor product of the basic representations
of the unitary groups U(H1) and U(H2), i.e. with the representation of the direct product group
in H = H1 ⊗ H2,

U(H1) × U(H2) � (ρ1, ρ2) �→ ρ1 ⊗ ρ2 ∈ U(H) = U(H1 ⊗ H2),

(ρ1 ⊗ ρ2)(x1 ⊗ x2) = ρ1(x1) ⊗ ρ2(x2).

Note that ρ1 ⊗ ρ2 is unitary, since the Hermitian product in H is related to the Hermitian
products in H1 and H2 by

〈x1 ⊗ x2, y1 ⊗ y2〉H = 〈x1, y1〉H1 · 〈x2, y2〉H2 . (80)

The above group imbedding which, with some abuse of notation, we will denote by

Seg : U(H1) × U(H2) → U(H)

gives rise to the corresponding imbedding of Lie algebras

Seg : u(H1) × u(H2) → u(H),

or, by our identification, of their duals

Seg : u∗(H1) × u∗(H2) → u∗(H). (81)

The original Segre imbedding is just the latter map reduced to pure states. In fact, a more
general result holds true.

Proposition 5. The imbedding (81) maps Pk(H1) × P l (H2) into Pkl(H1 ⊗ H2) and
Dk(H1) × Dl(H2) into Dkl(H1 ⊗ H2).
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Proof. Let us take A1 ∈ Pk(H1) and A2 ∈ P l (H2). Using bases of eigenvectors
(
e1
i

)
of

A1 and
(
e2
j

)
of A2 to construct a basis

(
e1
i ⊗ e2

j

)
of eigenvectors of A1 ⊗ A2, one easily

sees that the elements of the spectrum of A1 ⊗ A2 (counted with multiplicities) are λiλ
′
j ,

where A1
(
e1
i

) = λie
1
i and A2

(
e2
j

) = λ′
j e

2
j , so that A1 ⊗ A2 = Seg(A1, A2) is non-negatively

defined and has rank kl. If A1, A2 have trace 1, i.e.
∑

i λi = 1 and
∑

j λ′
j = 1, then∑

i,j λiλ
′
j = ∑

i λi · ∑
j λ′

j = 1. �

Let us denote the image Seg(Dk(H1)×Dl(H2)) by Sk,l(H1 ⊗H2), the set S1,1(H1 ⊗H2)

of separable pure states simply by S1(H1 ⊗ H2), and the convex hull

conv(Seg(D(H1) × D(H2)))

of the subset Seg(D(H1) × D(H2)) of all separable states in u∗(H) by S(H1 ⊗ H2). The
states from

E(H1 ⊗ H2) = D(H1 ⊗ H2)\S(H1 ⊗ H2),

i.e. those which are not separable, are called entangled states.

Proposition 6. The convex set S(H1 ⊗ H2) of separable states is the convex hull of the set
S1(H1 ⊗ H2) of separable pure states and S1(H1 ⊗ H2) is exactly the set of extremal points
of S(H1 ⊗ H2). Moreover, S1(H1 ⊗ H2), thus S(H1 ⊗ H2), is invariant with respect to the
canonical U(H1) × U(H2)-action on u∗(H1 ⊗ H2),

(T1, T2)A = (T1 ⊗ T2) ◦ A ◦ (T1 ⊗ T2)
†.

Proof. Let us start by showing that the convex hull of S1(H1 ⊗ H2) contains Seg(D(H1) ×
D(H2)) thus equalsS(H1⊗H2). IndeedD1(Hi ) is the set of extreme points ofD(Hi ), i = 1, 2,
so that any Ai ∈ D(Hi ) is a convex combination Ai = t is ρ

i
s of elements ρi

s ∈ D1(Hi ), i = 1, 2.
Hence, A1 ⊗ A2 is the convex combination

A1 ⊗ A2 =
∑
s,s ′

t1
s t2

s ′ · ρ1
s ⊗ ρ2

s ′ .

On the other hand, every state ρ1 ⊗ ρ2, ρi ∈ D(Hi ), i = 1, 2, is in D1(H1 ⊗ H2), i.e. it
is an extremal point of D(H1 ⊗ H2). Therefore it cannot be written as a non-trivial convex
combination of elements from D(H1 ⊗ H2), thus from a smaller set S(H1 ⊗ H2). The
invariance is obvious, since

(T1 ⊗ T2) ◦ (ρ1 ⊗ ρ2) ◦ (
T

†
1 ⊗ T2

)† = (
T1ρ1T

†
2

) ⊗ (
T1ρ2T

†
2

)
and

(
T1ρiT

†
2

) ∈ D1(Hi ) for ρi ∈ D1(Hi ). �

Since we are working in a finite-dimensional space, the closeness of the corresponding
hulls is automatic that can be derived from the following lemma.

Lemma 5. If V is an n-dimensional real vector space and x is a convex combination
x = ∑m

i=1 tixi of certain points of V , then x is a convex combination of at most (n + 1) points
among xi’s.

Proof. It suffices to prove that x is a convex combination of (m−1) of xi’s, provided m > n+1.
Of course, we can assume that all ti > 0. If m > n + 1, then there are ai ∈ R, not all equal to
0, such that

∑m
1 ai = 0 and

∑m
1 aixi = 0. There is i0 such that

∣∣ai0

/
ti0

∣∣ is maximal among∣∣ai0

/
ti0

∣∣, i = 1, . . . , m. We can assume without loss of generality that i0 = m. Hence

x =
m−1∑
i=1

(
ti − aitm

am

)
xi
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and the above combination is convex, since
(
ti − ai tm

am

)
� 0 and

m−1∑
1

(
ti − aitm

am

)
=

m∑
1

(
ti − aitm

am

)
=

m∑
1

ti = 1.

�

Proposition 7. The convex hull conv(E) of a compact subset E in a finite-dimensional real
vector space V is compact.

Proof. Suppose that the dimension of the space is n and denote by �n+1 the compact (n + 1)-
dimensional simplex

�n+1 =
{

t = (t1, . . . , tn+1) : ti � 0,

n+1∑
1

ti = 1

}
.

According to the above lemma, conv(E) is the image of the compact set � × E × · · · × E

(E appears in the product (n + 1)-times) under the continuous map

� × E × · · · × E � (t, x1, . . . , xn+1) �→
n+1∑

1

tixi ∈ V.

�

Corollary 6. The set S(H1 ⊗ H2) is a compact subset of u∗(H1 ⊗ H2).

The entangled states play an important role in quantum computing and one of the main
problems is to decide effectively whether a given composite state is entangled or not. An
abstract measurement of entanglement can be based on the following observation (see also
[42]).

Let E be the set of all extreme points of a compact convex set K in a finite-dimensional real
vector space V and let E0 be a compact subset of E with the convex hull K0 = conv(E0) ⊂ K .
For every non-negative function f : E → R+ define its extension fK : K → R+ by

fK(x) = inf
x=∑

tiαi

∑
tif (αi), (82)

where the infimum is taken with respect to all expressions of x in the form of convex
combinations of points from E. Recall that, according to Krein–Milman theorem, K is the
convex hull of its extreme points.

Theorem 9. For every non-negative continuous function f : E → R+ which vanishes exactly
on E0 the function fK is convex on K and vanishes exactly on K0

Proof. It is completely obvious that fK vanishes on the convex hull of E0. The function fK

is convex, since for every convex combination x = tiyi of points of K and every ε > 0 we
can find extreme points αj with convex combinations yi = s

j

i αj and fK(yi) > s
j

i f (αj ) − ε.
Hence

fK(tiyi) = fK

(
tis

j

i αj

)
� tis

j

i f (αj ) < ti(f (yi) + ε) = tifK(yi) + ε.

Due to arbitrariness of ε > 0 we get

fK(tiyi) � tifK(yi).

Note finally that fK vanishes exactly on K0. Indeed K0 is compact due to proposition 7 and
if x /∈ K0, then x and K0 can be separated by a hyperplane; i.e. there is a linear functional
φ : V → R such that φ(x) = a > 0 and φ is negative on K0. Denote by E1 the (compact) set
of those points from E on which φ takes non-negative values and by F the minimum of f on E1.
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Of course, F > 0, since E1 ∩ E0 = ∅. Let M ∈ R be the maximum of φ on E. Of course,
M > 0. For any realization x = tiαi of x as a convex combination of points of E we have

a = φ(x) =
∑

i

tiφ(αi) �
∑
αi∈E1

tiφ(αi) � M
∑
αi∈E1

ti .

On the other hand,∑
i

tif (αi) �
∑
αi∈E1

tif (αi) � F
∑
αi∈E1

ti � aF

M
,

so fK(x) � aF
M

> 0. �

Corollary 7. Let F : D1(H1 ⊗ H2) → R+ be a continuous function which vanishes exactly
on S1(H1 ⊗ H2). Then

µ = FD(H1⊗H2) : D(H1 ⊗ H2) → R+

is a measure of entanglement, i.e. µ is convex and µ(x) = 0 ⇔ x ∈ S(H1 ⊗ H2). Moreover,
if f is taken U(H1) × U(H2)-invariant, then µ is U(H1) × U(H2)-invariant.

Proof. The first part is a direct consequence of theorem 9. Also the invariance of µ is clear:

µ(TρT †) = inf
W

(tif (αi)) = inf
W ′

(tif (T αiT
†)) = inf

W ′
(tif (αi)) = µ(ρ),

where T is in the corresponding group,

W =
{
(ti , αi) : TρT † =

∑
tiαi, αi ∈ S1(H1 ⊗ H2), ti � 0,

∑
ti = 1

}
,

and

W ′ =
{
(ti , αi) : ρ =

∑
tiαi, αi ∈ S1(H1 ⊗ H2), ti � 0,

∑
ti = 1

}
.

�

A careful study of the geometry of u∗(H1 ⊗H2) and criteria of entanglement we postpone
to a separate paper.

Acknowledgments

We would like to thank V S Varadarajan for useful discussions on the contents of this paper.
This work was supported by the Polish Ministry of Scientific Research and Information
Technology under (solicited) grant no PBZ-Min-008/P03/03 and partially supported by PRIN
SINTESI.

References

[1] Dirac P A M 1958 The Principles of Quantum Mechanics 4th edn (Oxford: Pergamon)
[2] von Neumann J 1971 Foundations of Quantum Mechanics (Princeton, NJ: Princeton University Press)
[3] Pauli W 1980 General Principles of Quantum Mechanics (Berlin: Springer) (translated from German by

P Achuthan and K Venkatesan)
[4] Weyl H 1931 The Theory of Groups and Quantum Mechanics (New York: Dover)
[5] Wigner E 1939 On unitary representations of the inhomogeneous Lorentz group Ann. Math. 40 149–204
[6] Wigner E P 1959 Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Pure and

Applied Physics vol 5) (New York: Academic) (Expanded and improved edn. Translated from German by
J J Griffin)



Geometry of quantum systems: density states and entanglement 10243
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[38] Cirelli R, Maniá A and Pizzocchero L 1990 Quantum mechanics as an infinite-dimensional Hamiltonian system

with uncertainty structure Int. J. Math. Phys. 31 2891–7
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